A new algorithm for the identification of sinusoidal signal frequency with constant parameters
Annotation
The paper presents a solution for identifying the frequency of a sinusoidal signal with constant parameters. The issue can be relevant for compensation of disturbances, control of dynamic objects, and other tasks. The authors propose a method to improve the quality of the estimation of the sinusoidal signal frequency and to ensure exponential convergence to zero of the estimation errors. At the first stage, the sinusoidal signal is presented as an output signal of a linear generator of finite dimension. The signal parameters (amplitude, phase, and frequency) are unknown. At the second stage, the Jordan form of the matrix and the delay operator are applied to parameterize the sinusoidal signal. After a series of special transformations, the simplest equation is obtained containing product of one frequency-dependent unknown parameter and a known function of time. To find the unknown parameter, the authors used the methods of gradient descent and least squares. A new algorithm for the parametrization of a sinusoidal signal is presented. The solution is based on transforming the signal model to a linear regression equation. The problem is solved using gradient descent and least squares tuning methods based on a linear regression equation obtained by parametrizing a sinusoidal signal. The results involve the analysis of the capabilities of the proposed estimation method using computer modeling in the Matlab environment (Simulink). The results confirmed the convergence of the frequency estimation errors to the true values. The developed method can be effectively applied to a wide class of tasks related to compensating or suppressing disturbances described by sinusoidal or multisinusoidal signals, for example, to control a surface vessel with compensation of sinusoidal disturbances.
Keywords
Постоянный URL
Articles in current issue
- A study of a silicone film deposited on quartz glass under laser radiation
- Optical composites based on organic polymers and semiconductor pigments
- A study of silicon p-n structures with mono and multifacial photosensitive surfaces
- Detection of yawning in driver behavior based a convolutional neural network
- A Game Theory approach for communication security and safety assurance in cyber-physical systems with Reputation and Trust-based mechanisms
- A study of the influence of human factors on the speed of urban rail transport
- An algorithm for detecting RFID-duplicates
- Reduction of LSB detectors set with definite reliability
- Classification of objects in images with distortions based on a two-stage topological analysis
- Dimensionality reduction of the attributes using fuzzy optimized independent component analysis for a Big Data Intrusion Detection System
- An optimal swift key generation and distribution for QKD
- A study of vectorization methods for unstructured text documents in natural language according to their influence on the quality of work of various classifiers
- Recognition the emotional state based on a convolutional neural network
- Intellectualization of personnel development management in high-tech service-oriented companies
- A study of the efficiency of the magnetic compass correction system
- A new analytical model of drain current and small signal parameters for AlGaN-GaN high-electron-mobility transistors
- Imputation and system modeling of acid-base state parameters for different groups of patients
- Construction of movement trajectories for objects based on the Dubins car problem, taking into account constant external influences
- A mathematical model of an epidemic with an arbitrary law of recovery
- Simulation of the pulsed outflow of air and fine powder mixture, partially filling the discharge channel
- Vectorized numerical algorithms for the solution of continuum mechanics problems
- A comparative analysis of computational intelligence algorithms for estimation of LTE channels
- Implementation of a clinical decision support system to improve the medical data quality for hypertensive patients